การย้าย ค่าเฉลี่ย การสั่งซื้อ 1


ค่าเฉลี่ยเคลื่อนที่: อะไรคือตัวชี้วัดทางเทคนิคที่เป็นที่นิยมมากที่สุดค่าเฉลี่ยเคลื่อนที่จะใช้เพื่อวัดทิศทางของแนวโน้มในปัจจุบัน ค่าเฉลี่ยเคลื่อนที่ทุกประเภท (เขียนโดยทั่วไปในบทแนะนำนี้เป็น MA) คือผลทางคณิตศาสตร์ที่คำนวณโดยเฉลี่ยจำนวนจุดข้อมูลที่ผ่านมา เมื่อพิจารณาแล้วค่าเฉลี่ยที่เกิดขึ้นจะถูกวางแผนลงในแผนภูมิเพื่อให้ผู้ค้าสามารถดูข้อมูลที่ราบรื่นแทนที่จะมุ่งเน้นไปที่ความผันผวนของราคาในแต่ละวันที่มีอยู่ในตลาดการเงินทั้งหมด รูปแบบที่ง่ายที่สุดของค่าเฉลี่ยเคลื่อนที่โดยทั่วไปหมายถึงค่าเฉลี่ยเคลื่อนที่ที่เรียบง่าย (SMA) โดยคำนวณค่าเฉลี่ยเลขคณิตของชุดค่าที่กำหนด ตัวอย่างเช่นในการคำนวณค่าเฉลี่ยเคลื่อนที่ 10 วันคุณจะเพิ่มราคาปิดจาก 10 วันที่ผ่านมาและหารผลตาม 10 ในรูปที่ 1 ผลรวมของราคาในช่วง 10 วันที่ผ่านมา (110) คือ หารด้วยจำนวนวัน (10) เพื่อให้ได้ค่าเฉลี่ย 10 วัน หากผู้ค้าต้องการเห็นค่าเฉลี่ย 50 วันแทนจะต้องมีการคำนวณประเภทเดียวกัน แต่จะรวมราคาในช่วง 50 วันที่ผ่านมา ค่าเฉลี่ยที่เกิดขึ้นด้านล่าง (11) คำนึงถึงจุดข้อมูล 10 จุดที่ผ่านมาเพื่อให้ผู้ค้าทราบว่าสินทรัพย์มีราคาเทียบกับ 10 วันที่ผ่านมาอย่างไร บางทีคุณอาจสงสัยว่าทำไมผู้ค้าทางเทคนิคเรียกเครื่องมือนี้ว่าเป็นค่าเฉลี่ยเคลื่อนที่และไม่ใช่แค่ค่าเฉลี่ยปกติ คำตอบก็คือเมื่อค่าใหม่มีพร้อมใช้งานจุดข้อมูลที่เก่าที่สุดต้องถูกลดลงจากชุดข้อมูลและจุดข้อมูลใหม่ ๆ ต้องมาเพื่อแทนที่ ดังนั้นชุดข้อมูลจึงมีการย้ายข้อมูลบัญชีใหม่ ๆ ไปเรื่อย ๆ วิธีการคำนวณนี้ช่วยให้แน่ใจได้ว่าจะมีการบันทึกข้อมูลปัจจุบันเท่านั้น ในรูปที่ 2 เมื่อมีการเพิ่มค่าใหม่ของชุดที่ 5 ช่องสีแดง (แทนจุดข้อมูล 10 จุดที่ผ่านมา) จะเลื่อนไปทางขวาและค่าสุดท้ายของ 15 จะถูกลดลงจากการคำนวณ เนื่องจากค่าที่ค่อนข้างเล็ก 5 จะแทนที่ค่าที่สูงถึง 15 คุณจึงคาดว่าจะเห็นค่าเฉลี่ยของการลดลงของชุดข้อมูลซึ่งในกรณีนี้มีค่าตั้งแต่ 11 ถึง 10 ค่าเฉลี่ยของค่าเฉลี่ยเคลื่อนที่เมื่อค่าของ MA ได้รับการคำนวณพวกเขาจะวางแผนลงบนแผนภูมิและเชื่อมต่อแล้วเพื่อสร้างเส้นค่าเฉลี่ยเคลื่อนที่ เส้นโค้งเหล่านี้มีอยู่ทั่วไปในแผนภูมิของผู้ค้าด้านเทคนิค แต่วิธีการใช้งานเหล่านี้อาจแตกต่างกันอย่างมาก (ในภายหลัง) ดังที่เห็นในรูปที่ 3 คุณสามารถเพิ่มค่าเฉลี่ยเคลื่อนที่ได้มากกว่าหนึ่งรายการในแผนภูมิโดยการปรับจำนวนช่วงเวลาที่ใช้ในการคำนวณ เส้นโค้งเหล่านี้ดูเหมือนจะเสียสมาธิหรือทำให้เกิดความสับสนในตอนแรก แต่คุณจะคุ้นเคยกับมันเมื่อเวลาผ่านไป เส้นสีแดงเป็นเพียงราคาเฉลี่ยในช่วง 50 วันที่ผ่านมาในขณะที่เส้นสีน้ำเงินเป็นราคาเฉลี่ยในช่วง 100 วันที่ผ่านมา ตอนนี้คุณเข้าใจว่าค่าเฉลี่ยเคลื่อนที่คืออะไรและแนะนำให้ใช้ค่าเฉลี่ยเคลื่อนที่ที่ต่างกันและดูว่าค่าเฉลี่ยเคลื่อนที่แตกต่างจากค่าเฉลี่ยเคลื่อนที่ที่กล่าวถึงก่อนหน้านี้เท่าไร ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายเป็นที่นิยมอย่างมากของผู้ค้า แต่เป็นตัวบ่งชี้ทางเทคนิคทั้งหมดก็มีนักวิจารณ์ หลายคนอ้างว่าประโยชน์ของ SMA มีข้อ จำกัด เนื่องจากแต่ละจุดในชุดข้อมูลมีน้ำหนักเหมือนกันโดยไม่คำนึงถึงตำแหน่งที่เกิดขึ้นในลำดับ นักวิจารณ์ยืนยันว่าข้อมูลล่าสุดมีความสำคัญมากกว่าข้อมูลที่เก่ากว่าและควรมีอิทธิพลมากขึ้นต่อผลลัพธ์สุดท้าย ในการตอบสนองต่อคำวิจารณ์นี้ผู้ค้าเริ่มให้น้ำหนักกับข้อมูลล่าสุดซึ่งนำไปสู่การประดิษฐ์เครื่องคิดเลขใหม่ ๆ ประเภทต่างๆซึ่งเป็นที่นิยมมากที่สุดซึ่งเป็นค่าเฉลี่ยเคลื่อนที่แบบเสวนา (EMA) (สำหรับการอ่านเพิ่มเติมโปรดดูข้อมูลเบื้องต้นเกี่ยวกับค่าเฉลี่ยถ่วงน้ำหนักและความแตกต่างระหว่าง SMA กับ EMA) ค่าเฉลี่ยเคลื่อนที่แบบเสวนาค่าเฉลี่ยเคลื่อนที่แบบเสวนาคือค่าเฉลี่ยเคลื่อนที่ที่ให้น้ำหนักมากกว่าราคาล่าสุดในความพยายามที่จะทำให้การตอบสนองดีขึ้น ข้อมูลใหม่ ๆ การเรียนรู้สมการที่ค่อนข้างซับซ้อนสำหรับการคำนวณ EMA อาจไม่จำเป็นสำหรับผู้ค้าจำนวนมากเนื่องจากเกือบทุกชุดรูปแบบแผนภูมิทำคำนวณสำหรับคุณ อย่างไรก็ตามสำหรับคุณ geeks คณิตศาสตร์ออกมีที่นี่สมการ EMA: เมื่อใช้สูตรในการคำนวณจุดแรกของ EMA คุณอาจสังเกตเห็นว่าไม่มีค่าที่จะใช้เป็น EMA ก่อนหน้านี้ ปัญหาเล็ก ๆ นี้สามารถแก้ไขได้โดยเริ่มต้นการคำนวณด้วยค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายและต่อเนื่องโดยใช้สูตรด้านบนจากที่นั่น เราได้จัดเตรียมสเปรดชีตตัวอย่างไว้ในตัวอย่างชีวิตจริงในการคำนวณทั้งค่าเฉลี่ยเคลื่อนที่แบบเรียบและค่าเฉลี่ยเคลื่อนที่แบบเสวนา ความแตกต่างระหว่าง EMA และ SMA ตอนนี้คุณเข้าใจดีว่า SMA และ EMA คำนวณอย่างไรให้ลองดูว่าค่าเฉลี่ยเหล่านี้แตกต่างกันอย่างไร เมื่อพิจารณาการคำนวณ EMA คุณจะสังเกตเห็นว่าจุดข้อมูลสำคัญ ๆ อยู่ในจุดข้อมูลล่าสุดทำให้เป็นประเภทของค่าเฉลี่ยถ่วงน้ำหนัก ในรูปที่ 5 ตัวเลขของช่วงเวลาที่ใช้ในแต่ละค่าเฉลี่ยเหมือนกัน (15) แต่ EMA จะตอบสนองต่อการเปลี่ยนแปลงราคาได้เร็วขึ้น สังเกตว่า EMA มีมูลค่าสูงขึ้นเมื่อราคาเพิ่มขึ้นและลดลงเร็วกว่า SMA เมื่อราคาลดลง การตอบสนองนี้เป็นเหตุผลหลักที่ทำให้ผู้ค้าจำนวนมากต้องการใช้ EMA มากกว่า SMA อะไรที่แตกต่างกันระหว่างวันหมายถึงค่าเฉลี่ยเคลื่อนที่เป็นตัวบ่งชี้ที่สามารถปรับแต่งได้โดยสิ้นเชิงซึ่งหมายความว่าผู้ใช้สามารถเลือกกรอบเวลาที่ต้องการได้ทุกเมื่อสร้างค่าเฉลี่ย ช่วงเวลาที่ใช้บ่อยที่สุดในการเคลื่อนที่โดยเฉลี่ยอยู่ที่ 15, 20, 30, 50, 100 และ 200 วัน ช่วงเวลาสั้น ๆ ที่ใช้ในการสร้างค่าเฉลี่ยความละเอียดอ่อนมากขึ้นคือการเปลี่ยนแปลงราคา ยิ่งช่วงเวลาที่ยาวนานขึ้นเท่าไรก็ยิ่งอ่อนไหวหรือเรียบเนียนขึ้นเท่านั้นโดยเฉลี่ยแล้ว ไม่มีกรอบเวลาที่เหมาะสมที่จะใช้เมื่อตั้งค่าค่าเฉลี่ยเคลื่อนที่ของคุณ วิธีที่ดีที่สุดในการหาว่าผลงานใดที่ดีที่สุดสำหรับคุณคือการทดสอบกับช่วงเวลาที่แตกต่างกันไปจนกว่าคุณจะหาช่วงเวลาที่เหมาะกับกลยุทธ์ของคุณ 6.2 ค่าเฉลี่ยเคลื่อนที่ 40 elecsales, order 5 41 ในคอลัมน์ที่สองของตารางนี้ a ค่าเฉลี่ยเคลื่อนที่ของคำสั่งที่ 5 แสดงขึ้นโดยให้ค่าประมาณของรอบแนวโน้ม ค่าแรกในคอลัมน์นี้คือค่าเฉลี่ยของห้าข้อสังเกตแรก (1989-1993) ค่าที่สองในคอลัมน์ 5-MA คือค่าเฉลี่ยของค่า 1990-1994 และอื่น ๆ แต่ละค่าในคอลัมน์ 5-MA คือค่าเฉลี่ยของการสังเกตในระยะเวลาห้าปีที่ตรงกลางกับปีที่สอดคล้องกัน ไม่มีค่าสำหรับสองปีแรกหรือสองปีที่ผ่านมาเพราะเราไม่มีข้อสังเกตสองด้าน ในสูตรด้านบนคอลัมน์ 5-MA มีค่าหมวกกับ k2 หากต้องการดูว่ามีการคาดการณ์แนวโน้มของวงจรแนวโน้มใดเราจะคำนวณพล็อตพร้อมกับข้อมูลต้นฉบับในรูปที่ 6.7 พล็อต 40 elecsales, main quotResidential ขายไฟฟ้า quot, ylab quotGWhquot สังเกตว่าแนวโน้ม (สีแดง) นุ่มนวลกว่าข้อมูลเดิมและจับภาพการเคลื่อนไหวหลักของชุดข้อมูลเวลาโดยไม่มีความผันผวนเล็กน้อยทั้งหมด วิธีเฉลี่ยเคลื่อนที่ไม่อนุญาตให้มีการประมาณค่า T ซึ่ง t อยู่ใกล้กับปลายของชุดดังนั้นเส้นสีแดงจึงไม่ขยายไปยังขอบของกราฟทั้งสองด้าน ต่อมาเราจะใช้วิธีการประเมินแนวโน้มรอบแนวโน้มที่มีความซับซ้อนมากขึ้นซึ่งจะอนุญาตให้มีการประมาณใกล้จุดสิ้นสุด ลำดับของค่าเฉลี่ยเคลื่อนที่จะเป็นตัวกำหนดความเรียบของการประมาณแนวโน้มรอบ โดยทั่วไปคำสั่งที่มีขนาดใหญ่หมายถึงเส้นโค้งที่นุ่มนวล กราฟต่อไปนี้แสดงผลของการเปลี่ยนแปลงลำดับของค่าเฉลี่ยเคลื่อนที่สำหรับข้อมูลการขายไฟฟ้าที่อยู่อาศัย ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายเช่นนี้มักเป็นคำสั่งแปลก ๆ (เช่น 3, 5, 7, ฯลฯ ) ซึ่งเป็นสมมาตร: ในค่าเฉลี่ยเคลื่อนที่ของคำสั่ง m2k1 มีการสังเกตก่อนหน้านี้ k สังเกตการณ์ในภายหลังและการสังเกตการณ์กลาง ที่มีค่าเฉลี่ย แต่ถ้ามมก็จะไม่สมมาตรอีกต่อไป ค่าเฉลี่ยเคลื่อนที่ของค่าเฉลี่ยเคลื่อนที่ (moving average) ค่าเฉลี่ยเคลื่อนที่ (moving average) เป็นค่าเฉลี่ยเคลื่อนที่ เหตุผลหนึ่งในการทำเช่นนี้คือการทำให้สมมุติฐานค่าเฉลี่ยของค่าเฉลี่ยที่เท่ากัน ตัวอย่างเช่นเราอาจใช้ค่าเฉลี่ยเคลื่อนที่ของลำดับที่ 4 จากนั้นให้ใช้ค่าเฉลี่ยเคลื่อนที่อื่นของคำสั่งที่ 2 ต่อผลลัพธ์ ในตารางที่ 6.2 ข้อมูลนี้ถูกสร้างขึ้นในช่วงไม่กี่ปีแรกของข้อมูลการผลิตเบียร์รายไตรมาสของออสเตรเลีย beer2 lt - หน้าต่าง 40 ausbeer เริ่มต้น 1992 41 ma4 lt-ma 40 beer2 ลำดับที่ 4. ศูนย์ FALSE 41 ma2x4 lt-ma 40 beer2 ลำดับ 4. ศูนย์ TRUE 41 สัญกรณ์ 2times4-MA ในคอลัมน์สุดท้ายหมายถึง 4-MA ตามด้วย 2-MA ค่าในคอลัมน์สุดท้ายจะได้รับโดยการคำนวณค่าเฉลี่ยเคลื่อนที่ของลำดับที่ 2 ของค่าในคอลัมน์ก่อนหน้า ตัวอย่างเช่นสองค่าแรกในคอลัมน์ 4-MA คือ 451.2 (443410420532) 4 และ 448.8 (410420532433) 4 ค่าแรกในคอลัมน์ 2times4-MA คือค่าเฉลี่ยของทั้งสอง: 450.0 (451.2448.8) 2. เมื่อ 2-MA ตามค่าเฉลี่ยเคลื่อนที่ของลำดับคู่ (เช่น 4) จะเรียกว่าค่าเฉลี่ยเคลื่อนที่ที่ศูนย์กลางของคำสั่ง 4 เนื่องจากผลลัพธ์นี้สมมาตร เพื่อดูว่าเป็นกรณีนี้เราสามารถเขียน 2times4-MA ดังต่อไปนี้: เริ่มต้นแอมป์หมวก frac Bigfrac (y y y y) frac (y y y y) frac18y frac18y frac18y frac end ตอนนี้มันเป็นค่าเฉลี่ยถ่วงน้ำหนักของการสังเกต แต่มันเป็นสมมาตร การรวมกันของค่าเฉลี่ยเคลื่อนที่อื่น ๆ ก็เป็นไปได้ ตัวอย่างเช่นมักใช้ 3times3-MA และประกอบด้วยค่าเฉลี่ยเคลื่อนที่ของคำสั่งที่ 3 ตามด้วยค่าเฉลี่ยเคลื่อนที่อื่นของคำสั่ง 3 โดยทั่วไปคำสั่ง MA แม้แต่จะต้องตามด้วยคำสั่ง MA ที่ทำให้เป็นสมมาตร ในทำนองเดียวกันคำสั่งแปลก ๆ ของ MA ควรเป็นไปตามคำสั่งแบบแปลก ๆ ของ MA การประมาณแนวโน้มรอบกับข้อมูลตามฤดูกาลการใช้ค่าเฉลี่ยเคลื่อนที่โดยรวมที่ใช้บ่อยที่สุดคือการประมาณแนวโน้มรอบจากข้อมูลตามฤดูกาล พิจารณา 2times4-MA: frac18y frac18y frac18y เมื่อนำไปใช้กับข้อมูลรายไตรมาสในแต่ละไตรมาสของปีจะได้รับน้ำหนักเท่ากันเป็นครั้งแรกและครั้งสุดท้ายที่ใช้กับไตรมาสเดียวกันในปีต่อเนื่อง ดังนั้นความแปรผันตามฤดูกาลจะได้รับการเฉลี่ยและค่าที่ได้จากหมวกจะมีการเปลี่ยนแปลงตามฤดูกาลเพียงเล็กน้อยหรือไม่มีเลย ผลที่คล้ายกันจะได้รับโดยใช้ 2times 8-MA หรือ 2times 12-MA โดยทั่วไปแล้ว 2times m-MA จะเท่ากับค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักของคำสั่ง m1 กับการสังเกตทั้งหมดที่มีน้ำหนัก 1 เมตรยกเว้นเงื่อนไขแรกและครั้งสุดท้ายที่ใช้น้ำหนัก 1 (2 เมตร) ดังนั้นถ้าระยะเวลาตามฤดูกาลเป็นไปได้และมีคำสั่ง m ให้ใช้ 2times m-MA เพื่อประมาณแนวโน้มรอบ ถ้าระยะเวลาตามฤดูกาลเป็นเลขคี่และจากคำสั่ง m ให้ใช้ m-MA เพื่อประมาณวัฏจักรของแนวโน้ม โดยเฉพาะช่วงเวลา 2 เดือน 12-MA สามารถใช้ในการประมาณวัฏจักรของข้อมูลรายเดือนและ 7-MA สามารถใช้ในการประมาณแนวโน้มรอบของข้อมูลรายวัน ตัวเลือกอื่น ๆ สำหรับคำสั่งของ MA มักจะส่งผลให้ประมาณการแนวโน้มรอบถูกปนเปื้อนตามฤดูกาลในข้อมูล ตัวอย่าง 6.2 การผลิตอุปกรณ์ไฟฟ้ารูปที่ 6.9 แสดงค่า 2times12-MA ที่ใช้กับดัชนีการสั่งซื้ออุปกรณ์ไฟฟ้า สังเกตว่าเส้นเรียบแสดงให้เห็นว่าไม่มีฤดูกาลใดใกล้เคียงกับวัฏจักรของแนวโน้มที่แสดงในรูปที่ 6.2 ซึ่งใช้วิธีการที่ซับซ้อนมากขึ้นกว่าค่าเฉลี่ยเคลื่อนที่ ทางเลือกอื่น ๆ สำหรับคำสั่งของค่าเฉลี่ยเคลื่อนที่ (ยกเว้น 24, 36 ฯลฯ ) จะส่งผลให้เส้นเรียบที่แสดงความผันผวนบางฤดูกาล พล็อต 40 elecequip, ylab quot คำสั่งซื้อใหม่ indexquot col quotgrayquot การผลิตอุปกรณ์ไฟฟ้าหลัก (Euro area) 41 บรรทัด 40 ma 40 elecequip, order 12 41. col quotredquot 41 ค่าเฉลี่ยถ่วงน้ำหนักการรวมกันของค่าเฉลี่ยเคลื่อนที่จะส่งผลให้ค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนัก ตัวอย่างเช่น 2x4-MA ที่พูดถึงข้างต้นจะเทียบเท่ากับน้ำหนัก 5-MA ที่มีน้ำหนักให้โดย frac, frac, frac, frac, frac โดยทั่วไปแล้ว m-MA ที่ถ่วงน้ำหนักสามารถเขียนเป็น hat t sum k aj y โดยที่ k (m-1) 2 และน้ำหนักโดยจุด a เป็นสิ่งสำคัญที่น้ำหนักทั้งหมดรวมกันเพื่อให้หนึ่งและว่าพวกเขาจะสมมาตรเพื่อให้ aj a. ง่าย m-MA เป็นกรณีพิเศษที่น้ำหนักทั้งหมดมีค่าเท่ากับ 1m ข้อได้เปรียบที่สำคัญของค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักคือให้ค่าประมาณของวงจรแนวโน้ม แทนที่จะสังเกตการป้อนและออกจากการคำนวณที่น้ำหนักเต็มน้ำหนักของพวกเขาจะเพิ่มขึ้นอย่างช้าๆและจากนั้นค่อยๆลดลงส่งผลให้เส้นโค้งเรียบ ใช้ชุดน้ำหนักที่เฉพาะเจาะจงบางชุด บางส่วนของข้อมูลเหล่านี้แสดงในตาราง 6.3.2.1 แบบจำลองการเคลื่อนไหวเฉลี่ย (แบบจำลอง MA) โมเดลของชุดข้อมูลเวลาที่รู้จักกันในชื่อ ARIMA อาจรวมถึงข้อกำหนดอัตโนมัติและหรือค่าเฉลี่ยเคลื่อนที่ ในสัปดาห์ที่ 1 เราได้เรียนรู้คำอัตโนมัติในรูปแบบชุดเวลาสำหรับตัวแปร x t เป็นค่า lag ของ x t ตัวอย่างเช่นคำจำกัดความที่ล่าช้า 1 คือ x t-1 (คูณด้วยสัมประสิทธิ์) บทเรียนนี้กำหนดคำศัพท์เฉลี่ยเคลื่อนที่ ค่าเฉลี่ยเคลื่อนที่ในรูปแบบของชุดเวลาเป็นข้อผิดพลาดที่ผ่านมา (คูณด้วยสัมประสิทธิ์) อนุญาต (wt overset N (0, sigma2w)) ซึ่งหมายความว่า w w จะเหมือนกันกระจายอย่างอิสระแต่ละอันมีการแจกแจงแบบปกติมีค่าเฉลี่ย 0 และค่าความแปรปรวนเดียวกัน รูปแบบการเคลื่อนที่โดยเฉลี่ยที่ 1 แสดงโดย MA (1) คือ (xt mu wt theta1w) รูปแบบการเคลื่อนที่โดยเฉลี่ยแบบที่ 2 แสดงโดย MA (2) คือ (xt mu wt theta1w theta2w) , แสดงโดย MA (q) คือ (xt หมู่น้ำหนักเบา theta1w theta2w จุด thetaqu) หมายเหตุ ตำราเรียนและโปรแกรมซอฟต์แวร์จำนวนมากกำหนดรูปแบบที่มีสัญญาณเชิงลบก่อนข้อกำหนด นี้ไม่ได้เปลี่ยนคุณสมบัติทางทฤษฎีทั่วไปของรูปแบบแม้ว่าจะไม่พลิกสัญญาณเกี่ยวกับพีชคณิตของค่าสัมประสิทธิ์ประมาณและเงื่อนไข (unsquared) ในสูตรสำหรับ ACFs และความแปรปรวน คุณจำเป็นต้องตรวจสอบซอฟต์แวร์ของคุณเพื่อตรวจสอบว่ามีการใช้เครื่องหมายเชิงลบหรือบวกในการเขียนแบบจำลองที่ถูกต้องหรือไม่ R ใช้เครื่องหมายบวกในโมเดลต้นแบบดังที่เราทำที่นี่ คุณสมบัติเชิงทฤษฎีของซีรี่ส์เวลากับแบบ MA (1) โปรดทราบว่าค่าที่ไม่ใช่ศูนย์เดียวใน ACF ทางทฤษฎีเป็นค่าความล่าช้า 1 autocorrelations อื่น ๆ ทั้งหมดเป็น 0 ดังนั้นตัวอย่าง ACF กับ autocorrelation อย่างมีนัยสำคัญเท่านั้นที่ล่าช้า 1 เป็นตัวบ่งชี้ของรูปแบบที่เป็นไปได้ MA (1) สำหรับนักเรียนที่สนใจการพิสูจน์คุณสมบัติเหล่านี้เป็นส่วนเสริมของเอกสารฉบับนี้ ตัวอย่างที่ 1 สมมติว่าแบบจำลอง MA (1) คือ x t 10 w t .7 w t-1 ที่ไหน (น้ำหนักเกิน N (0,1)) ดังนั้นค่าสัมประสิทธิ์ 1 0.7 ทฤษฎี ACF ได้รับโดยพล็อตของ ACF นี้ดังนี้ พล็อตที่แสดงให้เห็นคือทฤษฎี ACF สำหรับ MA (1) กับ 1 0.7 ในทางปฏิบัติตัวอย่างมักไม่ค่อยให้รูปแบบที่ชัดเจนเช่นนี้ ใช้ R เราจำลองค่า n 100 ตัวอย่างโดยใช้โมเดล x t 10 w t .7 w t-1 โดยที่ w t iid N (0,1) สำหรับการจำลองแบบนี้ข้อมูลพร็อพเพอร์ตี้ตามเวลาจะเป็นดังนี้ เราไม่สามารถบอกได้มากจากพล็อตนี้ ตัวอย่าง ACF สำหรับข้อมูลจำลองดังต่อไปนี้ เราจะเห็นการเพิ่มขึ้นของความล่าช้าที่ 1 ตามด้วยค่าที่ไม่ใช่นัยสำคัญสำหรับความล่าช้าในอดีต 1. โปรดทราบว่าตัวอย่าง ACF ไม่ตรงกับรูปแบบทางทฤษฎีของ MA ต้นแบบ (1) ซึ่งเป็นค่าความสัมพันธ์ระหว่างความล่าช้าทั้งหมดที่ผ่านมา 1 จะเป็น 0 ตัวอย่างที่แตกต่างกันจะมีตัวอย่าง ACF ที่แตกต่างกันเล็กน้อยที่แสดงด้านล่าง แต่อาจมีลักษณะกว้างเช่นเดียวกัน สมบัติทางทฤษฎีของแบบเวลากับแบบ MA (2) สำหรับแบบจำลอง MA (2) คุณสมบัติทางทฤษฎีมีดังต่อไปนี้: โปรดทราบว่าเฉพาะค่าที่ไม่ใช่ศูนย์ใน ACF ทางทฤษฎีเท่านั้นสำหรับการล่าช้า 1 และ 2 ค่าความสัมพันธ์กับความล่าช้าที่สูงขึ้นคือ 0 ดังนั้น ACF ตัวอย่างกับ autocorrelations อย่างมีนัยสำคัญที่ล่าช้า 1 และ 2 แต่ autocorrelations ที่ไม่สำคัญสำหรับความล่าช้าสูงแสดงให้เห็นถึงรูปแบบที่เป็นไปได้ MA (2) iid N (0,1) ค่าสัมประสิทธิ์คือ 1 0.5 และ 2 0.3 เนื่องจากนี่คือ MA (2) ทฤษฎี ACF จะมีค่าที่ไม่ใช่ศูนย์เฉพาะที่ล่าช้า 1 และ 2 ค่าของสอง autocorrelations ไม่ใช่ศูนย์เป็นพล็อต ACF ตามทฤษฎี เกือบตลอดเวลาเป็นกรณีตัวอย่างข้อมูลเคยชินทำงานค่อนข้างสมบูรณ์เพื่อเป็นทฤษฎี เราจำลองค่าตัวอย่าง 150 ตัวอย่างสำหรับรุ่น x t 10 w t .5 w t-1 .3 w t-2 โดยที่ w t iid N (0,1) พล็อตชุดข้อมูลตามลำดับ เช่นเดียวกับชุดข้อมูลอนุกรมเวลาสำหรับข้อมูลตัวอย่าง MA (1) คุณไม่สามารถบอกได้มากจากข้อมูลนี้ ตัวอย่าง ACF สำหรับข้อมูลจำลองดังต่อไปนี้ รูปแบบเป็นเรื่องปกติสำหรับสถานการณ์ที่โมเดล MA (2) อาจเป็นประโยชน์ มีสอง spikes ที่สำคัญอย่างมีนัยสำคัญที่ล่าช้า 1 และ 2 ตามด้วยค่าที่ไม่สำคัญสำหรับความล่าช้าอื่น ๆ โปรดทราบว่าเนื่องจากข้อผิดพลาดในการสุ่มตัวอย่างตัวอย่าง ACF ไม่ตรงกับรูปแบบทางทฤษฎีเลย ACF for General MA (q) Models คุณสมบัติของโมเดล MA (q) โดยทั่วไปคือมีความสัมพันธ์กับค่าที่ไม่ใช่ศูนย์สำหรับ q lags แรกและ autocorrelations 0 สำหรับ lags ทั้งหมด gtq ความไม่เป็นเอกลักษณ์ของการเชื่อมต่อระหว่างค่า 1 และ (rho1) ในรูปแบบ MA (1) ในรูปแบบ MA (1) สำหรับค่า 1 1 1 ซึ่งกันและกันให้ค่าเช่นเดียวกับตัวอย่างให้ใช้ 0.5 เป็นเวลา 1 จากนั้นใช้ 1 (0.5) 2 เป็นเวลา 1 คุณจะได้รับ (rho1) 0.4 ในทั้งสองกรณี เพื่อตอบสนองข้อ จำกัด ทางทฤษฎีที่เรียกว่า invertibility เรา จำกัด โมเดล MA (1) ให้มีค่าที่มีค่าสัมบูรณ์น้อยกว่า 1. ในตัวอย่างที่ให้ไว้เพียงแค่ 1 0.5 จะเป็นค่าพารามิเตอร์ที่ยอมให้ใช้ได้ในขณะที่ 1 10.5 2 จะไม่ ความผันแปรของรูปแบบ MA แบบจำลอง MA กล่าวได้ว่าเป็น invertible ถ้าเป็นพีชคณิตเทียบเท่ากับรูปแบบ AR อนันต์ converging โดยการบรรจบกันเราหมายถึงค่าสัมประสิทธิ์ของ AR ลดลงเป็น 0 เมื่อเราเคลื่อนที่ย้อนกลับไปในเวลา Invertibility คือข้อจํากัดที่ตั้งโปรแกรมเป็นซอฟต์แวร์ชุดเวลาที่ใช้ในการประมาณค่าสัมประสิทธิ์ของแบบจำลองที่มีเงื่อนไข MA ไม่ใช่สิ่งที่เราตรวจสอบในการวิเคราะห์ข้อมูล ข้อมูลเพิ่มเติมเกี่ยวกับข้อ จำกัด ด้านความสามารถในการซ่อนตัวของ MA (1) ได้รับในภาคผนวก ทฤษฎีขั้นสูงหมายเหตุ สำหรับแบบจำลอง MA (q) ที่มี ACF ที่ระบุมีรูปแบบที่มีการเปลี่ยนแปลงได้เพียงแบบเดียว เงื่อนไขที่จำเป็นสำหรับ invertibility คือสัมประสิทธิ์มีค่าเช่นว่าสมการ 1- 1 y - - q y q 0 มีคำตอบสำหรับ y ที่อยู่นอกวงกลมหน่วย R รหัสสำหรับตัวอย่างในตัวอย่างที่ 1 เราได้วางแผนทฤษฎี ACF ของโมเดล x t 10 w t 7w t-1 จากนั้นจำลองค่า n 150 จากแบบจำลองนี้และวางแผนตัวอย่างซีพียูและตัวอย่าง ACF สำหรับข้อมูลจำลอง คำสั่ง R ที่ใช้ในการวางแผน ACF ทางทฤษฎี ได้แก่ acfma1ARMAacf (mac (0.7), lag. max10) 10 ACL ล่าช้าสำหรับ MA (1) กับ theta1 0.7 lags0: 10 สร้างตัวแปรล่าช้าที่มีตั้งแต่ 0 ถึง 10 (h0) เพิ่มแกนนอนลงในพล็อตคำสั่งแรกกำหนด ACF และจัดเก็บไว้ในอ็อบเจกต์ (ACF) และจะมีการจัดเก็บข้อมูลไว้ในออปเจ็กต์ (acfma1, xlimc (1,10), ylabr, typeh, ACF หลักสำหรับ MA (1) ด้วย theta1 0.7) ชื่อ acfma1 (เลือกชื่อของเรา) พล็อตคำสั่ง (คำสั่งที่ 3) แปลงล่าช้ากับค่า ACF สำหรับล่าช้า 1 ถึง 10 พารามิเตอร์ ylab ตั้งชื่อแกน y และพารามิเตอร์หลักจะทำให้ชื่อเรื่องเป็นพล็อต หากต้องการดูค่าตัวเลขของ ACF เพียงแค่ใช้คำสั่ง acfma1 การจำลองและแปลงทำตามคำสั่งต่อไปนี้ xcarima. sim (n150 รายการ (mac (0.7))) เลียนแบบ n 150 ค่าจาก MA (1) xxc10 เพิ่ม 10 เพื่อให้ค่าเฉลี่ย 10. ค่าเริ่มต้นของการจำลองจะหมายถึง 0. plot (x, typeb, mainSimulated MA (1) data) acf (x, xlimc (1,10), mainACF สำหรับข้อมูลตัวอย่างจำลอง) ในตัวอย่างที่ 2 เราวางแผนใช้ทฤษฎี ACF ของโมเดล xt 10 wt .5 w t-1 .3 w t-2 จากนั้นจำลองค่า n 150 จากแบบจำลองนี้และวางแผนตัวอย่างซีพียูและตัวอย่าง ACF สำหรับข้อมูลจำลอง คำสั่ง R ใช้คือ acfma2ARMAacf (mac (0.5,0.3), lag. max10) acfma2 lags0: 10 พล็อต (ล่าช้า acfma2, xlimc (1,10), ylabr, typeh, ACF หลักสำหรับ MA (2) กับ theta1 0.5, theta20.3) abline (h0) xcarima. sim (n150 รายการ (mac (0.5, 0.3))) xxc10 พล็อต (x, typeb, หลักจำลองแมสซาชูเซตส์ (2) ซีรี่ส์) acf (x, xlimc (1,10), mainACF สำหรับข้อมูลจำลอง MA (2)) ภาคผนวก: การพิสูจน์คุณสมบัติของ MA (1) สำหรับนักเรียนที่สนใจนี่เป็นหลักฐานสำหรับคุณสมบัติทางทฤษฎีของโมเดล MA (1) ความแปรปรวน: (text (xt) text (mu wt theta1 w) ข้อความ 0 (wt) text (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) เมื่อ h 1 นิพจน์ก่อนหน้านี้ 1 w 2. สำหรับ h 2 ใด ๆ นิพจน์ก่อนหน้า 0 เหตุผลก็คือตามนิยามของความเป็นอิสระของน้ำหนัก E (w k w j) 0 สำหรับ k j ใด ๆ นอกจากนี้เนื่องจาก w t มีค่าเฉลี่ยเป็น 0, E (w j w j) E (w j 2) w 2 สำหรับซีรี่ส์เวลาให้ใช้ผลลัพธ์นี้เพื่อให้ได้ ACF ที่ระบุไว้ด้านบน รูปแบบแมสซาชูเซตแบบพลิกกลับเป็นแบบที่สามารถเขียนเป็นแบบจำลอง AR ที่ไม่มีที่สิ้นสุดซึ่งจะมาบรรจบกันเพื่อให้ค่าสัมประสิทธิ์ AR แปรผันไปที่ 0 เมื่อเราเคลื่อนตัวกลับในเวลาอนันต์ แสดงให้เห็นถึงความสามารถในการพลิกกลับของ MA (1) ได้ดี จากนั้นเราจะแทนความสัมพันธ์ (2) สำหรับ w t-1 ในสมการ (1) (3) (zt wt theta1 (z-theta1w) wt theta1z-theta2w) ณ เวลา t-2 สมการ (2) กลายเป็นเราแทนความสัมพันธ์ (4) สำหรับ w t-2 ในสมการ (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) ถ้าเราจะดำเนินการต่อ อนันต์) เราจะได้รับแบบอนุกรม AR อนันต์ (zt wt theta1 z - theta21z theta31z - theta41z จุด) หมายเหตุ แต่ที่ 1 1 สัมประสิทธิ์คูณความล่าช้าของ z จะเพิ่มขึ้น (อนันต์) ในขนาดที่เราย้ายกลับมา เวลา. เพื่อป้องกันปัญหานี้เราต้องใช้ 1 lt1 นี่เป็นเงื่อนไขสำหรับรูปแบบ MA (1) ที่มองไม่เห็น รูปแบบการสั่งซื้อ Infinite Order ในสัปดาห์ที่ 3 ให้ดูว่าแบบจำลอง AR (1) สามารถแปลงเป็นแบบจำลอง MA อนันต์: (xt - mu wt phi1w phi21w dots phik1 w counts sum phij1w) ข้อสรุปของคำพูดเสียงสีขาวที่ผ่านมาเป็นที่รู้จักกัน เป็นตัวแทนเชิงสาเหตุของ AR (1) กล่าวอีกนัยหนึ่ง x t เป็น MA ชนิดพิเศษที่มีจำนวนอนันต์ที่จะย้อนกลับไปในเวลา นี่เรียกว่าลำดับ MA หรือ MA () ที่ไม่มีขีด จำกัด คำสั่งที่แน่นอนคือแมสซาชูเซตส์อนันต์ลำดับ AR และคำสั่งใด ๆ ที่ จำกัด AR เป็นลำดับที่ไม่มีขีด จำกัด MA จำได้ว่าในสัปดาห์ที่ 1 เราสังเกตเห็นว่าข้อกำหนดสำหรับ AR (1) ที่หยุดนิ่งคือ 1 lt1 ให้คำนวณ Var (x t) โดยใช้การแทนสาเหตุ ขั้นตอนสุดท้ายนี้ใช้ข้อเท็จจริงพื้นฐานเกี่ยวกับชุดข้อมูลทางเรขาคณิตที่ต้องใช้ (phi1lt1) มิฉะนั้นชุดข้อมูลจะแตกต่างออกไป NavigationIf คุณใช้ฟังก์ชัน MOVAVGn (ซึ่งได้รับการสนับสนุนในขั้นตอน SAS บางอย่างเช่น PROC MODEL, NLIN, PHREG, NLMIXED, CALIS, NLP, GENMOD, VARMAX, COMPILE, RISK, FCMP, PROTO, GA, HPF) เพื่อให้ได้ค่าเฉลี่ยเคลื่อนที่ โปรดทราบว่าสูตรที่ใช้ในฟังก์ชัน MOVAVGn ก่อน SAS 9.2 ไม่สอดคล้องกับคำจำกัดความของค่าเฉลี่ยเคลื่อนที่ของลำดับ n ซึ่งมักพบมากที่สุดในเอกสาร ฟังก์ชัน MOVAVGn คำนวณค่าเฉลี่ยเคลื่อนที่ของลำดับ n1 ไม่ใช่ค่าเฉลี่ยเคลื่อนที่ของลำดับ n โดยเฉพาะสูตรที่ใช้ในฟังก์ชัน MOVAVGn คือ: โดยที่ lagn (x) เป็นค่า n ล่าช้าของ x นิยามของค่าเฉลี่ยเคลื่อนที่ของ n คำสั่งที่พบบ่อยที่สุดในวรรณคดีคือ: Moving Average ของ n คำสั่ง (xlag1 (x) lag (n-1) (x)) n กำหนดค่าเฉลี่ยเคลื่อนที่ของ n เพื่อเปลี่ยนแปลง จาก SAS 9.2 เพื่อให้สอดคล้องกับคำนิยามที่ได้รับบ่อยที่สุดในวรรณคดี ระบบปฏิบัติการและข้อมูลเผยแพร่

Comments